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In the present work, the dynamic problem of coupled thermoelasticity with the 
most general type of nonuniformity and anisotropy is analyzed. The hyperbolic 
nature of the system of equations of coupled thermoelasticity is demonstrated, 
effects of extinction of separate waves by superposition of elastic and thermo- 
elastic wave fronts are investigated, and the interrelationship of different or- 
ders of discontinuity of stresses, displacements, and temperature is determined. 
The case of the uncoupled problem of thermoelasticityis especially analyzed. 
Sufficient conditions are obtained for the dynamic density for wave processes in 
thermoelasticity, previously investigated for boundary value problems of hyper- 
bolic systems of second order differential equations [i], andelastic stress waves 
[2] are obtained. The generally accepted system of tensor notation for the the- 
ory of thermoelasticity is used [3]. 

i. The complete system of equations of linear thermoelasticity, taking into account the 
interrelationship of temperature and mechanical fields with a finite rate of propagation of 
the body (see [4]), consists of the following: 

Equation of heat balance 

Law for heat conduction 

Equations of motion 

Cauchy's equations 

and the Duhamel--Neumann law 

w@ + c,O + ~G~Gu = O; 

,~q~ + qJ = --kuO,~; 

p-lVlO-~/ _-- u~; 

e u = 0.5(V~Uj + VjU3; 

(l.1) 

(1 .2)  

(1.3) 

(1.4) 

~i; =CiJhZVkU~__~i~O or e u =EUkz~hl+~uO. (1.5) 

For �9 = 0 and n = i, this system of equations degenerates into the usual system of equa- 
tions for coupled thermoelasticity with Fourier's law of heat conduction [3], while for 

= 0 we have the uncoupled problem of thermoelasticity. Eliminating from (1.1)-(1.5) the 
appropriate variables, we obtain the system to be solved for the stresses and temperature: 

--vj(k ~j Vie) + ~ + ~TOUl)(O + ~O) + ~T0=k~(~ u + ~z) = 0, 

�9 ~ 

where H~ = aij813 is an invariant. 

In the absence of temperature effects, the second set of equations (1.6) coincides with 
the equations obtained in [2]. 

We will examine a semi-infinite thermoelastic medium at rest, bounded by the surface S. 
Initially (t= 0), the surface S is subjected to temperature perturbations, the displacement 
velocities are given on part of the surface Su, and on the rest of the surface S~ the stress- 
es are known: 
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o%j {so = N~ (~) q (0 H (0, 

~ {s~ = r ~ (~ )  q (t)H (t), O Is = e ( ~ )  q (t)/t (t), (1.7) 
o ~j, u {, 0 - + 0  for { x { ~ o o ,  

o ' ~ = ~ J = u ' = ~ = O = 6 = O  fo~ t=O~ 

where v i = 6 i is the velocity of displacement; [x[ is the distance from the surface S. 

We will assume that the function Q is an arbitrary generalized function of time for 
which a Laplace transformation exists. The transform representation of Q has the form [I] 

~ =  V Q(") (i.8) p n + l "  

In order to determine the solution of the boundary value problem (1.6) and (1.7), we 
will use the representation of the solution from [1, 2] 

o " = : ' J ( : : , ~ ) H ( ~ ) =  E :(,~)'J'(x~)8-('+n'(~) + ~, 

u j = / (x% ~) H (P.) = Z f&)(~)8-"+")(Q) + ., ~(~), (1.9) 
n =n 14-1 n:O 

e = T (x% ~) H (~) = E r(~) (x ~) ~ (~+~) (~) + r(~)(~) ~ nI H ( ~ ) ;  

or in terms of transforms 

= t - -  o)(z a )  ( 1 . 1 0 )  

oo {- 

~'" ; /(n) 0-~oo~ 

n=n 0 P n----n1+ 1 
(i.ii) 

o,o 

6)---- Z 

The quantities no, n:, and n= can have negative, but finite, values. The function ~(x a) is 
a smooth function of coordinates that is not known beforehand; p is the Laplace transform 
variable. 

2. Let us determine the conditions for dynamic compatibility of discontinuities for 
the system of equations of thermoelasticity. Substituting (i.ii) into the transformed equa- 
tions (1.3), taking into account the initial values, collecting terms with identical powers 
of p, we obtain 

viii) = ~J " 
ViZ(n-2) - -  z~-x)r d, (2 .  i )  

and substituting (i.ii) into the transformed.equations (1.5), we have 

z~Jn) : C ~jhz (V~fl(n) - -  (~ - -  ~JT(n). ( 2 . 2 )  

We w i l l  r e f e r  t o  t h e  minimum o r d e r  o f  t h e  d i s c o n t i n u i t y  o f  t h e  f u n c t i o n  r e p r e s e n t e d  by  
a s e r i e s  o f  t h e  t y p e  ( 1 . 9 )  as  t h a t  v a l u e  o f  n f o r  which  t h e  n o n z e r o  t e r m s  o f  t h e  e x p a n s i o n  
b e g i n .  

It follows from (2.1) that nx~no, and from (2.2), then, n~ no. If T(no) -- 0, then 
n~ = no. In particular, in the absence of thermal effects the minimum order of the discon- 
tinuity in the displacement is always one unit greater than the order of the discontinuity 
of the strer If the orders of the minimum discontinuities in stress and temperature coin- 
cide, then exceptional situations can occur. 
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Let us consider (2.1) for n -- no + i: 

P/(%+D = -- 0,,~z(n.). (2.3) 

et fJ(no+~) = O. In accordance with (2.3), this is equivalent to the fact that the minimum 
discontinuity of the stress vector [2] on the wave front equals zero. In this case, from 
( 2 . 2 )  

=-- ~ ~(-0). (2.4) 

Therefore, if the surface of the wave front is free of stress (the values no = 0), then 
the discontinuity of the displacement velocity also is absent (n~ ~ no + i), while the com- 
ponents of the discontinuity of the stress tensor nn surfaces not coinciding with the sur- 
face of the front are determined by Eqs. (2.4). 

Substituting (i.ii) into the transformed equations (1,6), taking into account the zero 
initial data, and collecting terms with identical powers of p, we obtain recurrence equa- 

tions of the form 

B 1  ( ~ ( n - 2 ) )  - -  B 2  ( r ( n - 1 ) ~  z ~ J - 1 ) )  ---= B 3 (r(n), z~J)), 
~ B ~  ( 2 . 5 )  Z(n)), 

~ nO, n o'3c I,..., 

where the corresponding operators are defined by the equations 

B d L  z~J) = [x(e~ + ~l / 'oH0 - -  k~J0,,,0,,jl/' + ~lToX=hzz~', 
B~ ~ (T, ~'0 = v~-~%~ ,~0,.~'.j ~ - -  ~ r ,  

B~(T, z~J) = vj(k~J0,,~r) + k~J0,,~r,i -[" (e~ -{- ~lrJtOr + nro~h,z~', 
B] ~ (~'~) = C ~z'~ {V, (P-~,~:~) + p-~0,,~W~}, 

O~ (r)  = w ( ~ r . 3 ,  B, ~ (~'0 = --  C~V~ (P-~W~.9. 

Let us examine Eqs. (2.5) for n = no. By the method of corresponding [2] linear 
the matrix with unknown data for 

, 

~j 
transformations of the variables z(%) , as well as the rows, 
homogeneous algebraic equations can be put into the form 

.12 13 23  .$l(n0) r(%) ~(%)Z(%)Z(n0) 
....................................... ~'i ............................. F " " 6  ....... "6 ........ 0 

~' ~...I jw.k-- l.," -- P 0,,k ." U U U 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i ~ o o J 
, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  : . . . . . . . . . . .  . . . . . . . . . . .  ~ . . . . . . . . . . . .  .o. . . . . . . . .  . . . . oHRo 

p-lc12k.0, __ ~lS I ...z ,~ -- l 0 0 

IC13k 0, _ ~13 _ I P ...z ,h 0 l 0 
- - 1 ~ 2 3 k .  ~ 2 3  - -  p (;...~ 0,,~ -- 0 0 I j  

(3.1) 

Here, ~n0 ) zZi z -i 
= (no)~i = B(no)G n , (3.2) 

R~ are the coefficients of the expansion of the stress vector on the wave front in a series 
similar to the series (1.9); G n is the velocity of propagation of the wave front along the 
normal to the front. In (3.1), the variables that stand before the columns are written above 

the columns of the matrix. 

The transformation (3.2) can be inverted (we omit the index no): 

zli = 0,]i (~i _ 0,,~z~ _0, ~z~), 
zo~ 0,~1 ( ~  _ 0 , a z ~ -  0,,~z=), z ~ = 0 , 2  ( ~  0, ~ z l ~ -  0, ~z~). 

Carrying out similar linear transformations for Eqs. (2.5), for values n = no + 1 .... 
we transform the recurrence equations into the form 
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i 
--~ ~ ( n - - 2 ) )  ~ 

k = 1, 2 . . . . .  7, 

wh~e R~ (~, ;~) = F~  (T, :~) ~,, fo~ k = t ,  2, 3; 

= ~" ~ T  -~ -~ J ~ z ~s - - V J ( k % ~ T )  / ? ~ ( T , ~ )  ~.Fq oP {V~(P ~ ) + 9 - m , i V ,  } 

- -  k ~Jro,jT ~ - -  (c8 q-  NToH1)  T - -  ~lToamzkl;  ( 3 . 3 )  

f3.?q~Top V~(P V,Z ), n ~ ( r ,  4 ' ) = W ( # r , ~ ) - -  '" -~ -~ 'J ' 
R ?  (T,  ; ' )  = F~ ~ ( T , ; ' )  ( m = 5 w h e n  k Z = 1 2 ;  m = 6 ,  

when k l  = 13; m = 7 when k l  = 23); 

e~ z (T, ;~) --lC~s'o) ~ U T - -  ~ _ 5 ~  = P . .d  ,~b - -  ~ j~rz  , 

�9 ..2 --10") gsJ ~ F~ ~ ( r ,  ~)  = c ~'" [ w  (p-*;J) + ,o ,~w ~, 

_ C ~ t ~ .  r y  (T, ;~) ---- ...~W ( 9 - ~ V S ) .  

~j  i �9 
I n  a d d i t i o n ,  ~(n) a r e  e x p r e s s e d  r e c u r r e n t l y  i n  t e r m s  o f  ~(n), ~n-x) ,~  a c c o r d i n g  t o  t h e  

e q u a t i o n  
zZ3n)'" = ~,̂ -aPiih'o)t~..., ,h~(n)rt __ Vo'ir(~) - -  F~ i ( T(n-1) ,  ;~,,-~)) - -  F~ j ( r ( n - ~ ) ,  ~ n - 2 ) ) .  ( 3 . 4 )  

It is immediately evident from Eq. (3.4) that six components of the stress tensor (ziJ) 
are determined according to the three known components of the stress vector (~J) and the tem- 
perature only by means of algebraic operations and differentiation. Using similar proce- 
dures, the displacement vector is determined by relations (2.1). In this connection, we re- 
duce the solution of the boundary value problem (1.6), (1.7) to the problem of determining 
~J (n),.T(n) (n = no, ). The equations of motion in these variables have already been ob- 
tained, this is Eq. i313) for the values k = i, 2, 3, 4, in which ziJ ~n) are expressed in 
terms of Eqs. (3.4). We note that in these equations for n -- h the r~ght sides in general 
will depend on the expansion coefficients with numbers h -- i, h,-- 2, ..., no. 

Let us obtain the boundary conditions. Since all wave fronts are formed on the surface 
S, using the equations [2] 

"0 = - - ~ o , ~ , ,  G~ = - - l v o ) [ - L  

we rewrite the boundary conditions (1.7) in the form 

L 

~(n)tu,j n ----= ',f(n), 
i=~ (3.5) 

L L 

- -  s ( n )  ~ ---- z ( n )  I s  ---- FO(n), 

where y corresponds to the number of the front; L is the number of wave fronts in the problem. 

4. For further investigations of problems of solubility of the recurrence equations, 
we will probe the hyperbolic nature of the system of equations of thermoelasticity (i.I)- 
(1.5). We will carry out the analysis in a Cartesian system of coordinates. It can be shown 
that the matrix of the characteristic determinant of the system of equations of thermoelastic- 
ity coincides with the matrix (3.1) (if the characteristic surface is sought in the form 

= 0). As is well known [5], the condition for the hyperbolic property is equivalent to 
the condition that at any chosen point in space along any chosen direction there exist ex- 
actly 4 possible velocities of propagation of the wave (taking into account the multiplic- 
ity of the velocities). Sometimes, in the presence of multiple characteristics, the systems 
of equations are called weakly hyperbolic [6]. 

The determinant of the matrix (3.1) coincides to within a factor ~ with the determinant 
of the 4 x 4 corner minor. 

Let us write the auxiliary system of algebraic equations relative to the unknowns Pi 
(i = i,..., 4) 

T~,~ = 5~t)~, (4ol) 
j = q  
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where 

V~ - -  (% - - c e T o ~ ;  ~z ~G;,; 6~ - - ( , h G 2 "  ( v L 0 I  ,; v -~ . . . . .  '= " . . . .  == k v ,  sG,~ . 

The determinant of Eqs. (4.1) 

___ 
Go 

$'~} I --o 
[02~t~" __ 0) l 

(4.2) 

coincides to within a nonzero factor with the characteristic determinants of the equations 
2 of thermoelasticity. We will show that all roots ~ = G n of the equation I = 0 are real. 

The condition I = 0 is equivalent to the existence of nonzero solutions pj (j = I,..., 
4). Let ~ ----~I ~-i~2 be the complex value of one of the roots and the solution pj corre- 
sponding to it, which, generally speaking, is also complex. We will show that ~2 = O. 

Let us transform Eqs. (4.1) as follows: 

4 4 4 3 

Z Z "~,jt)jPi = ~a 8i IPi [z = pG ~ Z I P~ [" - -  (% G$21 q412. ( 4 . 3 )  
i=l j=l ~=I i=l 

Here, the bar indicates complex conjugation; 
ber. 

I.,.,I indicates the modulus of the complex num- 

Since the matrix Yij (i, j = i,..., 4) is symmetric, the left side of (4.3) is real. 
For this reason, we equate the imaginary part of the right side of (4.3) to zero: 

p + ~ 1 ~ 1 ~ ( ~ + ~ )  -~ ~ . ,=  o. . ~  

The invariant ~ = (zTo)-Ik~vjv8 is a positive definite quadratic form [3]. It follows from 
here that B2 - 0, so that the quantity G 2 is real. We will show that the quantity G n is al- 

n 2 
So real (i.e., G n > 0). For this purpose, let us multiply the fourth row and the fourth col- 
umn of the matrix of the determinant (4.2) by G n and write the system of equations of type 
(4.1) corresponding to its matrix, for which 

7~J = ?J~ = %, 74~ ~ ~4 = ~Gn, 744 = ~2, 6~ =pG~, 

84 = ~1r (~, i = i ,  2, 3). 

We repeat the calculations similar to (4.3): 

3 3 3 3 

3 8 3 3 

i=1 j=l i=l i=1 
P4 [2. 

(4.4) 

The right side of (4.4) is real. The sum on the left side is also real. From here we have 
the fact that G n is real. 

Thus, we have proved that the system of equations of thermoelasticity is hyperbolic. 
We note that if in order to prove that the system of equations of theory of elasticity 
(O-------0) is hyperbolic it is enough that only the first law of thermodynamics is satisfied, 
providing symmetry of the coefficients aij , then for thermoelasticity, in addition, it is 
necessary that the second law of thermodynamics be satisfied in order that the quadratic form 
m2 be positive definite. 

Since the system of equations of thermoelasticity has been shown to be hyperbolic, 
practically repeating word for word the discussion from [i, 2], it can be shown that for 
each value of n the solution of the reaurrence equations (2.5) reduces to a system consist- 
ing of four differential equations with first order partial derivatives. For values n~no+ 
i, the equations will have in general an inhomogeneous right side. The initial conditions 
for these differential equations are determined from (3.5). 
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Thus, the problem of determining the expansion coefficients for the series (1.9) has 
been reduced to Cauchy's problems for a system of differential equations with first order 
partial derivatives. It is assumed that all necessary conditions providing for the existence 
and uniqueness of the solutions of these problems are satisfied. The uniqueness in the class 
of wave solutions of the problem (1.6), (1.7) follows from here, and when the series (1.9) 
converge, the existence of the solutions follows as well. 

We note that the system of equations (1.6) reduces in a recurrent manner to the solu- 
tion of Cauchy's problems with the most general right sides of conditions (1.7). The only 
limitation is that the solution belong to the space of Laplace transformations. 

5. Let us study the special case of the solvability of the recurrence equations (2.5) 
for the uncoupled problem (0 = 0, T~=0), when the characteristic determinant has the form 

- k %  det  I - -  = 0.  ( 5 .  l )  

If ~ is found from the condition that the first cofactor equals zero, then the front of 
the temperature wave is determined. For such a value of ~, the temperature is determined in- 
dependently of the stress. If for given m the second cofactor in (5.1) differs from zero, 
i.e., the front of the temperature wave does not coincide with any front of the elastic wave, 
then in order to determine the jumps of the stress vector for each value of n there exists a 
nondegenerate system of linear algebraic equations with the right side known from the solu- 
tion to the temperature problem. Thus, on the temperature front, the stresses are deter- 
mined from the solution of these algebraic equations. The rest of the solutions ~, deter- 
mined from the fact that the second cofactor of Eq. (5.1) equals zero, will give the fronts 
of the elastic waves. Since the first cofactor in (5.1) is not equal to zero, from (2.5) 
(q = 0) it follows that on these fronts 0 = 0. Therefore, the discontinuities of stresses 
on these fronts are found by the same method as in [2]. Thus, the stress and temperature 
are discontinuous on the front of the temperature wave when only the stresses are discontin- 
uous on the front of the elastic wave. In the case that the temperature front coincides with 
one of the elastic wave fronts, on this front the equation 

. . . . .  - -  = ~ ~ , j T ( n o )  (5 . ' 2 )  

with a degenerate matrix with unknowns ~Ino) must have a nontrivial solution. For the one- 

problem --(~0)~0, ~n0)=~$0)=~ , it is necessary that T(no) = O, i.e., the mini- dimensional 

mum order of the discontinuity in temperature on the given front must be one unit less than 
the order of the stress discontinuity. 

For a multidimensional problem, in general, it is also necessary that T(no) = 0, but in 
specific situations this is not necessary. It is sufficient that thesolution for the tem- 
perature and[ anisotropy of the medium be such that in (5.2) the rank of the matrix in front 
of ~no) and[ the rank of the enlarged matrix coincide. It is possible to construct simple 
examples. 

We note especially that the limitations between values of no and n2 in the expansions 
(1.9) occur only for solutions (actually for particular solutions) of systems of recurrent 
differentia] equations (2.5), but not for the boundary conditions (1.4). The latter can be 
given independently. 

6. Let: us examine the condition for dynamic compactness of the coupled thermoelastic 
waves, when the boundary loads on the entire surface S are given only for stresses and tem- 
perature, i.e., in (1.7) S u -----~ is an empty set. 

THEOREM. The condition for dynamic compactness of waves for the system of equations of 
thermoelasticity (1.6) with the loads (1.7) (for Sa =~5) consists of the fact that the 
following the system of equalities is satisfied (on all fronts simultaneously): 

p c...~co,,%~ ~ o),~T = 0, 

( T ,  = ( T ,  = ( r ,  = 0 = t ,  2,  3). 
(6.1) 

In addition, in relations (6.1), 

-. _ l C i ~ . ( o  ~ j3iJT. (6.2) 
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Proof. Let us use the lemma in [i, 2], stating that the condition for dynamic compact- 
ness is equivalent to the fact that an impulsive (~-function of time) boundary load on the 
surface S corresponds to a solution as a sum of waves each of which at a fixed time repre- 
sents a S-function of coordinates. 

Let only a single term of the series Q(_,) in the expansions (1.8) differ from zero. We 
will prove that when the conditions (6.1) are satisfied, the series (1.9) for the stresses 
and temperature will also contain a single term. 

First, we note that Eq. (6.2) is a result of relations (3.4), (6.1), asserting that if 
the series of type (1.9) for the stress vector consists only of a single coefficient, then 
the similar series for the stress tensor also contains only a single term. For this reason, 
in order to prove the lemma (and therefore, the theorem as well) it is sufficient to show 
that when conditions (6.1) are satisfied one of the terms of the expansion in the series 
(1.8) of the function Q corresponds to a series consisting of a single term for the stress 
vector and temperature. 

Let us begin the solution of the recurrent system of equations (3.3). After determin- 
l ing ~-i) and T(_I) , in order to determine ~), T(0), ~(i~, T(,), and so on at each stage of 

the calculation we will have a Cauchy problem for a system of linear first order differen- 
tial equations, whose only solution is the null solution. Thus, the lemma is true, and there- 
fore, the theorem is proved. 

Remark. The theorem is true only in the case that for the expansions (1.9) no = nz. 
In the case that no > n2, conditions (6.1) will take on a somewhat different form. In the 
present work, in view of the limited space, this problem will not be considered. 

7. Let us examine somewhat transformed conditions of dynamic compactness (6.1) for an 
orthotropic inhomogeneous half-space, when uncoupled stress ~** and temperature O waves prop- 
agate along the direction of one of the axes of symmetry of the material xi." 

-t 2 __ -- ~iiT O; (p ~ , ~  I) z11 
a11(p-lzllco,1),, -'{- p-lCO,,zu = O; 

--I 11 (p = o,  

( ' ~ c 8 -  k**o),~l) T = 0; 

c~T -t- (k**o),,T),, -I- k**(o,,T,, = 0; 

(k , lT, , ) ,  1 = 0, 

(7 .i) 

(7.2) 

(7.3) 

(7.4) 

(7.5) 
(7.6) 

where a** = C,~,,; z** and T are the discontinuities in stress and temperature. 

From (7.1) and (7.4), we obtain two solutions for m~: 

P- lo )~  t 
(t) 12 = ,.rfcskl#, Y = q)g l l ,  (P = ~ll'l-- ; 

2 o~,, ---- paT#, T = O. 

(7.7) 

(7.8) 

When the relations (7.7) are realized (the front of the temperature wave), we have from (7.5) 

( 7 . 9 )  

Here and in what follows, the symbol C u denotes the arbitrary constants. 

Z II = C 2 (0o)21)1 / '* .  . 

From (7.3) and (7.6), it follows that 

From (7.2), we have 

(7 .!0) 

(7.11) 

From the requirement that the conditions (7.7), (7.9)-(7.11) coincide, we obtain 

(7.12) 
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: J" p x, + co; 

s k#dx  + : '/'-. 

(7.13) 
(7.14) 

With the realization (7.8) (the case of an elastic wave), the compatibility of the rela- 
tions (7.1)-(7.6) requires that only a single equality be satisfied: 

C~(pa11) t/4 = Csy pdxl- ~ C6" (7.15) 

Relations (7.12)-(7.15) impose limitations on the structure of the medium and, because 
of the constants Ca, on the type of solution as well. For dynamic compactness, only a single 
temperature wave is sufficient for satisfying Eq. (7.12), while for dynamic compactness of 
only the elastic wave, the equality (7.15). We note that (7.13) cannot be satisfied for 
properties of the half-space that do not depend on the coordinate xx. For this reason, the 
temperature ,wave in the uniform half-space propagates with diffusion. On the other hand, 
the elastic one-dimensional wave propagates in the half-space without diffusion. 

8. Let us examine the problem of controlling the number of waves. Let n = no in Eqs. 
(3.3). We will assume that all propagation velocities of the wave fronts G n are aliquant, 
then, for each solution ~(y) the rank of the corner minor of the matrix (3.1) equals 3. 
Therefore, the system of linear algebraic equations with an inhomogeneous right side 

can be solved for ~..,): 

~I~ T(,~) (8. i) 

(in the relations used, the index no is omitted; ~ varies from 1 to 4). 

The sums of the particular solutions must satisfy the boundary conditions (in the forces 

and temperature) : 

~ : N  , T(v ) = F  o. ( 8 . 2 )  
"~ = 1  ? : 1  S 

Here, Aa0=N~Q(% ) and Fo=FQ(no). Substituting (8.1) into (8.2), we obtain 

(8.3) 

In view of the uniqueness of the solution of the corresponding Cauchy problems, the sys- 
tem of equations (8.3) can be solved for T(v)[ s in the form 

where the coefficients ~t and a~ are simply expressed in terms of ~$Gn(~). 
Due to the aliquant nature of the wave fronts, only a single independent function T(y) 

exists on each solution. In order to determine T(no) on each front, we have a Cauchy prob- 
lem for a system of homogeneous first order differential equations. In view of the unique- 
ness of the solution of Cauchy's problem, we have the result: If the following condition is 
satisfied on the surface $ for a front with number 

~vzN~ 4- av4Fo = 0, ( 8 . 4 )  

then on this front the minimum order of the discontinuity of the stress vector and tempera- 
ture is one unit greater than the minimum order of the discontinuity for the boundary condi- 
tions. If, in addition, on these fronts, conditions of dynamic compactness (6.1) are satis- 
fied, then fronts with this number will not exist. In the latter case, in (8.4), No I and Fo 
should be understood as N i and F. 

We note that relation (8.4) cannot be satisfied for all four fronts. 
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Let relation (8.4) exist for y = i, 2, 3, i.e., T(z) = T4~ ) = T(8 ) --0. Then, relation 
(8.3) will have the form 

2G �9 == ~I~ ,~>:P~ Is SoL 

Let us determine the expression ~!~Gn<~). We have 

-- -- Ls~(4)C... l Vj(4)'Vh(4)~(4~. 

Substituting into (8.5) the expression from (8.2), having the form 

= Tc.)l  = Fo. 

we obtain 

= Ip ,h(4)~(~)-- P G~(~)C.: sVJ~4)~h(4)~'0)Is" (8.6) 

Let us examine the degenerate case. Let the value T -~ 0. Prom the form of the matrix 
(3.1), it follows that ~(4) -~ 0, and from here the velocity of propagation of the front 
Gn(4 ) + =. Then, from (8.6) we obtain that in this limiting case 

)Vlo ---- ~IkVhFo. (8.7) 

COROLLARY. If, with a thermal or mechanical impact on the surface S, the boundary loads 
for the coupled or uncoupled problem of thermoelasticity (without taking into account the fi- 
nite velocity of propagation of the heat flux) satisfy conditions (8.7), then the stress vec- 
tor is not discontinuous on the wave front. 

The validity of the latter corollary can be verified for particular examples of a heat 
impulse on the surface of an isotropic half-space [3] and a sphere [7]. Separate problems 
on controlling thermoelastic waves were solved previously in [8]. 
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